

THE CONCEPT

imagine that we have vector valued functions which are parametrized in terms of arc length...

Nov 9-7:53 PM

Curvature of a function is basically how fast the direction of the tangent
vector changes over

"The situation in 3 -space is more complicated because bends in a curve are not limited to a single plane -- they can occur in all directions, as illustrated by

To describe the bending characteristics of a curve in 3-space comnpletely, one must take into account $\mathrm{dT} / \mathrm{ds}$, $\mathrm{dN} / \mathrm{ds}$, and $\mathrm{dB} / \mathrm{ds}$. A complete study of this topic will take us too far afield, so we will limit our discussion to $\mathrm{dT} / \mathrm{ds}$, which is the most important of these derivatives in applications." (Anton, 874)

TRUE OR FALSE:

A circle will have a constant curvature.

Nov 9-8:07 PM

$\| \vec{r}^{\prime}(0)=\frac{1}{\vec{r}}(s)=<a \cos \left(\frac{s}{a}\right), a \sin \left(\frac{s}{a}\right)>$
$\vec{\gamma}^{\prime}(s)=\left\langle-\sin \left(\frac{s}{a}\right), \cos \left(\frac{s}{a}\right)\right\rangle$
first: does this make sense for the $\underbrace{\text { arc length }}$ parametrization of a circle of radius a ?
G equal distance r in equal time second: find the curvature of a circle of radius a

$$
\vec{r}(s)=<a \cos \left(\frac{s}{a}\right), a \sin \left(\frac{s}{a}\right)>
$$

$$
\begin{aligned}
& \text { Need } T^{\prime}(8) \ldots \\
& T(s)=r^{\prime}(s)=\left\langle-\sin \left(\frac{s}{a}\right), \cos \left(\frac{s}{a}\right)\right\rangle \\
& \vec{T}^{\prime}(s)=\left\langle-\frac{1}{a} \cos \left(\frac{s}{a}\right), \frac{-1}{a} \sin \left(\frac{s}{a}\right)\right\rangle= \\
& \left\|T^{\prime}(s)\right\|=\frac{1}{a}
\end{aligned}
$$

formulas for curvature

$$
\begin{aligned}
& \kappa(t)=\frac{\left\|\vec{T}^{\prime}(t)\right\|}{\left\|\vec{r}^{\prime}(t)\right\|} \\
& \kappa(t)=\frac{\left\|\vec{r}^{\prime}(t) \times \vec{r}^{\prime \prime}(t)\right\|}{\left\|\vec{r}^{\prime}(t)\right\|^{3}}
\end{aligned}
$$

(see 893-894 for the proof)

Find the curvature function for the circular helix:

$$
\vec{r}(t)=<a \cos (t), a \sin (t), c t>
$$

Nov 14-9:57 AM

Nov 14-10:09 AM

Find the curvature function for the ellipse:

$$
\vec{r}(t)=<2 \cos (t), 3 \sin (t)>
$$

Plot this curvature function on WinPlot and explain the result with reference to the original ellipse.

Home Enjoyment:

I. Read p. 877 on the radius of curvature
2. Section I2.5\#|-4,5,6,7,9

