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I’'m working on these problems not having read the chapter in the book.

Part (a)
Point A is (3,2). Point B is (13,9) The midpoint M is at the average of the
x- and y-coordinates, so (3+—213, %. This puts M at (8,5.5).

To get all points C (cg, ¢y)and D (dy, d,) which have M as the midpoint:

cx+dy cy+dy
— —) = (8,55
( 2 ’ 2 ) (7 )

So let C = (¢g, ¢y), that means D = (16 — ¢g, 11 — ¢y)

Part (b)

Here is an image showing my answer.
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A= (xp) for x=[3 for i=[1..61]],y=[2,21,..,9]]
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B=[(xp) for x=[13 for i=[1..61]],y=[2,21,..,9]]
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Figure 1: The green points are the midpoints of the red and blue line segments



Part (c)

Here is an image showing my answer. Notice that two line segments (1 di-

mensional) yield a 2 dimensional ’
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Figure 2: All midpoints for two line segments

Part (d)

The Desmos Calculator page I was using is here:
https://www.desmos.com/calculator/tokuntlegm
If you mess around with the page, you can see how the orange segment of the
left hand triangle creates a particular 2D region with the purple triangle. This
page is only finding midpoints from the boundaries of the two triangles. But
again, those boundaries form a midpoint region that is 2D!
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® H=[(llf%i,4+%i) fori=[0...k]}
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Let’s look specifically at how the
region in the midpoint shape.
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orange line on the left generates the orange
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Figure 3: Graphs of the midpoints of the orange segments with the highlighted
(underscored red) segments on the right

Look at what we see... All these figures concatenated gets us:



Figure 4: All midpoints connecting the orange line segment to the purple trian-
gle

Part (e)

Let’s see what we know! First off, most importantly, it shouldn’t matter for
the Minkowski symmetrization of a shape if the line of reflection is vertical,
horizontal, or at a slant. We're arbitrarily putting this problem on a coordinate
grid and drawing a line (such as with the second example given in part (e)).
But we can just rotate the diagram so that the line of reflection is facing in any
direction we want — and we can ignore the coordinate grid. This is geometry!
So let’s only worry about vertical lines of reflections — if we have a different line
of reflection, we can just rotate the paper to get a vertical line of reflection.

In part (b) we saw that with a vertical line of reflection and two vertical lines
which are reflections of each other, we get a single vertical line on the line of
reflection that is the Minkowski symmetrization.

In part (c) we saw that if we slightly tilted the lines (still with a vertical line of
reflection), we get a rhombus.

If T were to create two horizontal lines (still with a vertical line of reflection),
we’d get a horizontal line.

Now in part (d) we started finding the midpoints between line segments that
might not be reflections of each other. The segments could be different lengths!
What do we see? They all form parallelograms (some, flattened, forming a line
segment).

I suspect one way to easily generate the Minkowski symmetrizaton of a polygo-
nal shape is to come up with a quick way to find the set of midpoints between
any two line segments (so all the parallelograms). And then concatenate them.



In terms of the two line segments... Here’s what I think: If the two segments are
perpendicular, the midpoint region will rectangular... If the two segments are
parallel, the midpoint region will be a line segment... And if the two segments
are at a particular angle to each other, the parallelogram formed will also have
that same angle! And in fact, the sides of the parallelogram will also be parallel
to the two segments.
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Part (f)
Here’s what I came up with:



Part (g) Question 1

I'm going to share the conclusion first. I believe all the midpoints of the
chords that go through point P will form a circle. More specifically, a circle
that goes through point P and also that goes through the center of the original
circle.

T can show those two points (P and the center of the original circle) with these
illustrations...



Figure 5: The first image graphs the chord through P and the center of the
original circle. And of course the midpoint of that chord is the center of the
original circle. The second image graphs the chord through P that is has the
midpoint at P. Thus P will be the midpoint of that chord. (This second chord
is perpendicular to the first image’s chord.

But now let’s look at a different chord that goes through P...
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Figure 6: Look! I spy something that looks perpendicular!

If you look at this chord, I see if you connect the midpoint of the chord to
the center of the circle, it looks perpendicular. BUT OF COURSE IT IS! The
perpendicular bisector of ANY chord in a circle goes through the center of the
circle. So it doesn’t just look perpendicular. It IS perpendicular. Here are a
few more diagrams:

Figure 7: More perpendicularity



Now lets see this circle of points appear! Remember that if you have the
diameter of a circle (in this case, the point P and the center of the original
circle), then all points on that circle form a right angle to the endpoints of the
diameter.

This isn’t a full proof. I just realized I assumed the circle and then showed
the right angles! And I need to assume the right angles and show the circle
results. But I'm tired, so this is as far as I'm going to go with this!

Part (g) Question 2
To work on this, T built a geogebra applet because I first wanted to *see*
what would happen.
https://www.geogebra.org/classic/demj2cb9
After seeing the various sets of midpoints that resulted, I decided it wouldn’t



be fruitful to engage in all the various algebra involved. But here are some
screenshots...



Figure 8: Here are the screenshots for pgrious sets of midpoints of all ”chords”
that go through a point P in a square.



Part (h)
First look at these diagrams...

If you pick any point on the yellow line drawn, and then look at a distance 1
away on the yellow line, you’ll see that the midpoint will also be on the yellow
line. And since the yellow line is always on blue, it means the midpoint will also
be blue. BAM.

Part (i)

Of the four provided figures, the circle and square seem to satisfy the property
that all the interior points are midpoints of pairs of boundary points. And the
concave figures don’t work. Check out this from Wikipedia:

lilustration of a convex set which 57

looks somewhat like a deformed

circle. The line segment, illustrated

in black above, joining points x and lllustration of a non-convex set.
Y, lies completely within the set, lllustrated by the above line segment
illustrated in green. Since this is true whereby it changes from the black
for any potential locations of any two  color to the red color. Exemplifying
points within the above set, the set is why this above set, illustrated in
convex. green, is non-convex.

[l

Figure 9: https://en.wikipedia.org/wiki/Convex_set
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Part (j)

I don’t have any questions because right now my brain is fried. These prob-
lems made me think! Finding all sets of points that satisfy a given condition
is abstract thinking for me, and I learned my intuition is very off! I needed to
be able to play with things, and luckily because I know a bit about geogebra,
desmos, and desmos geometry, I could do just that!

Notes on My Reading Selection
What section of the book did you read?

I chose to read Section 10.2: ”On divisibility properties of Dyson’s rank parti-
tion function.”

In a few sentences, try describing the main ideas of the section.

The section starts by introducing us to what a partition is. It is the num-
ber of unique ways to split up a natural numbers into other natural numbers.
So 4 can be expressed as 4, 3+1, 24141, 2+2, 1+1+1+1. There are 5 ways to
partition 4. We express this as p(4) = 5. It turns out that p(4) = 5, p(9) = 30,
p(14) = 135, p(19) = 490, and p(24) = 1575, and p(29) = 4565. Whoa! All of
those numbers (4, 9, 14, 19, 24, 29) seem to have a number of partitions that are
divisible by 5. Random! It turns out this is true, and is written p(5n +4) =0
mod 5.

Eventually the following additional similar relations were found and proved
true).
p(>on+4)=0 mod 5

p(7Tn+5)=0 mod 7
p(1ln+6) =0 mod 11
p(17303n +237) =0 mod 13

We're finding that the partitions of whole infinite arithmetic series of numbers
are always divisible by certain primes. At least that’s what this suggests, but it
took many years just to find these.

But in 2000, Ken Ono proved that for every prime number greater than or
equal to 5, we can find a non-trivial infinite arithmetic sequence where all the
partitions of those numnbers are evenly divisible by that prime number. Whoa!

Back to the 20th century, 1944. Dyson was looking at p(5n +4) = 0 mod 5.
Let’s look at one number in this sequence p(9) = 30 to be concrete. It turns
out that there is a weird way that you can divide these 30 partitions up into 5
equal size buckets. To do this, we calculate the rank of each partition, which is
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the largest number in the partition minus the number of numbers in the par-
tition. And then we take the mod 5 of those ranks. That’s a lot, so I made a
spreadsheet to understand:

Larges Numb Large Numb
t er of st erof Rank
Numb Numb Rank Numb Numb (Larg
erin ersin (Large erin ersin est# Rank
Partiti Partiti st # - # Rank Partiti Partiti - # of mod
Parttition on on of #s) mod 5 Parttition on on #s) 5
9 9 1 8 3 4+2+2+1 4 4 0 0
8+1 8 2 6 1 4+2+1+1+1 4 5 -1 4
7+2 7 2 5 0 4+1+1+1+1+1 4 6 -2 3
7+1+1 7 3 4 4 3+3+3 3 3 0 0
6+3 6 2 4 4 3+3+2+1 3 4 -1 4
6+2+1 6 3 3 3 3+3+1+1+1 3 5 -2 3
6+1+1+1 6 4 2 2 3+2+2+42 3 4 -1 4
5+4 5 2 3 3 3+2+2+1+1 3 5 -2 3
5+3+1 5 3 2 2 3+2+1+1+1+1 3 6 -3 2
5+2+2 5 3 2 2 3+1+1+1+1+1+1 3 7 -4 1
5+2+1+1 5 4 1 1 2+2+2+2+1 2 5 -3 2
5+1+1+1+1 5 5 0 0 2+2+2+1+1+1 2 6 -4 1
4+4+1 4 3 1 1242+1+1+1+1+1 2 7 -5 0
4+3+2 4 3 1 11+1+1+1+1+141 2 8 -6 4
4+3+1+1 4 4 0 0 1+1+1+1+1+1+1 1 9 -8 2

You can see that 6 partitions have a rank of 0 (mod 5), 6 partitions have a
rank of 1 (mod 5), 6 partitions have a rank of 2 (mod 5), 6 partitions have a
rank of 3 (mod 5), and 6 partitions have a rank of 4 (mod 5).

To me, it’s a weird calculation, the rank, but it does equally divide up the
partitions of 9 into these buckets equal size buckets! It turns out — and it was
proven — that this will hold true for any p(5n + 4)

We can divide up those partitions into 5 buckets using the rank of each
partition, and those buckets will have the same number of partitions in them.
Whoa! And then this was later proven to be true for p(7n + 5) but using 7
buckets. Whoal!

And finally in 2010, Ono and Bringman proved this would hold true for all
these special arithmetic sequences that were studied earlier. In fact, they had
a stronger proof which went a bit beyond this and could also work with powers

of primes and not just primes.

What is a new word or term that you learned in your reading? What does
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it mean?

I had learned about partitions, but not about "rank.” The rank of any par-
tition is the difference of the largest number in the partition and the number of
summands in the partition

Describe a place where you got stuck in reading. Then, what steps did you
take to try to get unstuck?

I wanted to fully understand putting partitions in equally sized buckets, so
I created a spreadsheet to see if my understanding matched what the spread-
sheet said — and they did!

What in the reading “clicked” for you? How did the math you read about
connect with math you already knew? What did the reading make you wonder
about?

The reading was written so clearly that I didn’t have many questions. I think

the reason is because they used lots and lots of examples, and because I had
been introduced to partitions before so it wasn’t a new idea.
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