Blogging/Twittering

New Year, New Blog

Note: Julie Reulbach wrote this post on the ExploreMTBoS site! I’m copying it here for two reasons. One is that I want everyone to participate! Two, I have been in a crazy place this year, and I’ve thought “oh I should blog this” a bunch and never took the time to follow through. I am going to participate too! Join me!

Additional Note: Carl Oliver has also set up a blogging resolution challenge for 2017! And his post is inspirational.

Welcome to the Explore the MTBoS 2017 Blogging Initiative!

With the start of a new year, there is no better time to start a new blog!  For those of you who have blogs, it is also the perfect time to get inspired to write again!

Please join us to participate in this years blogging initiative!  To join, all you need to do is write just one post a week for the next four weeks.  To make it easier for you, we will post a new prompt every Sunday!  Once you have blogged, please fill out the form below.  Each week, your blogs will be posted on this site for all to enjoy!

This Week’s Theme:  My Favorites

This week, the blogging theme will be “My Favorites”, where you can post about one (or many) of your favorite things!  Called a “My Favorite,” it can be something that makes teaching a specific math topic work really well.  It does not have to be a lesson, but can be anything in teaching that you love!  It can also be something that you have blogged or tweeted about before.  Some ideas of favorites that have been shared are:

  • A lesson (or part of one) that went great
  • A game your students love to play
  • A fun and/or effective way to practice facts
  • A website or app you love to use in class
  • An organizational trick or tip that has been life changing
  • A product that you use in your classroom that you can’t live without!

Blog Newbies!

If you are brand new to blogging, you can read Starting A Blog from the 2015 initiative.  This post will give you specific instructions on how to start a blog.

Hot Tip!  Don’t stress about your blog name!

The hardest part about blogging is often coming up with a title.  Do not let this detail derail you!  A great suggestion is to make your blog address your name.  Then, you can title your blog later – or change the title anytime you want!  To see what this looks like, check out Sam Shah’s blog.  His web address is samjshah.com, but the site name is “Continuous Everywhere But Differentiable Nowhere“.  No one cares about your blog name, they just want to read interesting, inspiring, and helpful posts!

Hashtag it!  #MTBoS #MtbosBlogsplosion 

Don’t forget to tweet out your blog link and add hashtags so other teachers in the MTBoS community can easily find your post!  If you are not tweeting yet, you should be!  There is an amazing community of math educators there just waiting to inspire and support you!  Check out How To Start a Twitter Account to get started!  Also, if you are brand new to Twitter or just want to get more out of it, there are more Twitter tips on Julie Reulbach’s blogpost, Tweet, Connect, Repeat.

This year, we are joining up with the #mtbosblogsplosion.  Special thanks to  Carl Oliver@carloliwitter, for jump starting blogging for many people in our community!

Hashtags to add to your tweets:  #MTBoS #MtbosBlogsplosion

Also, if you have a wordpress blog, please re-blog this post to get the word out!

Deadline: Press submit by the end of the day Saturday, January 7, 2017.

Yes, this is a quick turn around this week – but we don’t want you to put it off or delay!  Once you are finished with your blog post, fill out this form and your blog post will be featured on this site [meaning the MTBoS site this is reblogged from] next week!

 

Twitter Math Camp 2017

We are starting to gear up for TMC17, which will be at Holy Innocents’ Episcopal School  in Atlanta, GA (map is here) from July 27-30, 2017. We are looking forward to a great event! Part of what makes TMC special is the wonderful presentations we have from math teachers who are facing the same challenges that we all are.

To get an idea of what the community is interested in hearing about and/or learning about we set up a Google Doc (http://bit.ly/TMC17-1). It’s a GDoc for people to list their interests and someone who might be good to present that topic. The form is still open for editing, so if you have an idea of what you’d like to see someone else present as you’re writing your own proposal, feel free to add it!

This conference is by teachers, for teachers. That means we need you to present. Yes, you! In the past everyone who submitted on time was accepted, however, this year we cannot guarantee that everyone who submits a proposal will be accepted. We do know that we need 10-12 morning sessions (these sessions are held 3 consecutive mornings for 2 hours each morning) and 12 sessions at each afternoon slot (12 half hour sessions that will be on Thursday, July 27 and 48 one hour sessions that will be either Thursday, July 27, Friday, July 28, or Saturday, July 29). That means we are looking for somewhere around 70 sessions for TMC17.

What can you share that you do in your classroom that others can learn from? Presentations can be anything from a strategy you use to how you organize your entire curriculum. Anything someone has ever asked you about is something worth sharing. And that thing that no one has asked about but you wish they would? That’s worth sharing too. Once you’ve decided on a topic, come up with a title and description and submit the form. The description you submit now is the one that will go into the program, so make sure it is clear and enticing. Please make sure that people can tell the difference between your session and one that may be similar. For example, is your session an Intro to Desmos session or one for power users? This helps us build a better schedule and helps you pick the sessions that will be most helpful to you!

If you have an idea for something short (between 5 and 15 minutes) to share, plan on doing a My Favorite. Those will be submitted at a later date.

The deadline for submitting your TMC Speaker Proposal is January 16, 2017 at 11:59 pm Eastern time. This is a firm deadline since we will reserve spots for all presenters before we begin to open registration on February 1st.

Thank you for your interest!

Team TMC17 – Lisa Henry, Lead Organizer, Mary Bourassa, Tina Cardone, James Cleveland, Daniel Forrester, Megan Hayes-Golding, Cortni Muir, Jami Packer, Sam Shah, and Glenn Waddell

#ExpandMTBoS

At #TMC16, Tina C. and I led a session called “Breaking Out of Ourselves.” It was a small brainstorming session which started out with us presenting the ways that the online math teacher community (#MTBoS) has started expanding itself — followed by a call to action.

Our presentation is here:

The crux of the presentation is that we (not just Tina and me, but many in the #MTBoS) have done a lot to make the #MTBoS community more welcoming and accessible to newcomers (the ExploreMTBoS initiative and mentoring program, the mathtwitterblogosphere website).There are conferences (#TMC) and tweetups (all over the place). There is a #MTBoS booth that travels to various (often NCTM) conferences and is manned by #MTBoS participants, to spread the word!

Other #MTBoS created things are available that are useful for teachers who don’t participate in the #MTBoS. There are books that have been written by #MTBoS-ers (e.g. Nix The Tricks, The Classroom Chef). There are website that are created by #MTBoS-ers and used by teachers everywhere (e.g. Visual Patterns, Which One Doesn’t Belong, Fraction Talks, Estimation 180, Would You RatherOpen Middle). There are podcasts (e.g. Tales from the Chalkline, Infinite Tangents). There are webinars and the Global Math Department Newsletter which rounds up and distills stuff from the community.

There are a number of smaller #MTBoS intiative that have happened pretty organically: A Day in the Life initiative, and the Letters to a First Year Teacher initiative, and Virtual Conferences.

And there were fun community building things, like Harlem Shake (Tweep Version) and Twittereen (and the now defunct, for those who remember, “Favorite Tweets”).

 All of this is to say: for those who are interested, there are many ways to help the community. You just have to find something you love about the #MTBoS, and then come up with a way to create/share/expand it with others. (That often involves breaking the idea into smaller chunks, getting other people on board to help, and actually holding each other accountable.) 

The #MTBoS doesn’t have a set of leaders. It only works because of the members. You don’t need to ask for permission. You don’t need to have been tweeting or blogging for months/years. You don’t need a “huge” project. You simply need to decide you want to do something, and do it. 

That is what our session was about. We shared some ideas that we had for places the community could grow, and ways people could actually do it, and then had people share their own thoughts and ideas.

Personally, the projects I’d love to see someone take on:

(1) Department presentations: I’m all about “packaging” something to make it easier for others to use. So I’d love for a group of people to create 3-4 “Introduction to the #MTBoS” presentations/workshops that math teachers can give to their departments. They can be different styles/lengths, and can have different activities involved. (For example, I made my whole department sign up for the GMD newsletter. At another presentation, I made a #MTBoS scavenger hunt, where different finds/activities were worth different points.) Then, anyone who wants can choose one and adapt it to make it work best when they want to evangelize the #MTBoS to their in-real-life colleagues! [Note: A number of #MTBoS presentations have been archived in the comments here.]

(2) A #MTBoS video: I saw PCMI (a math teacher conference I’ve been to) created a video to “sell” the program. I would love it if there were a #MTBoS video which captured the essence of what the community is. Maybe 30-60 seconds. Something professional that evokes feelings and excitement, the emotional essence of #MTBoS, rather than outlining what it all has to offer… Capturing lighting in a bottle, that is what I suppose I’m asking for. But if this can be done well, well… I think it could serve our community well.

(3) So you want to have a tweet up…: A number of people have held tweet-ups by now. I think it would be good if there could be “instructions on how to organize a tweet up” — from how to find people and contact them about attending to how to find a space to hold it to what to do at a tweet up. Again, perhaps two or three different “packages” for what tweetups could look like! This might make it easier for someone who might want to organize their own tweet up!

(4) NCTM article: I’d love for someone to write an article about the #MTBoS community for Mathematics Teacher (or another NCTM journal) – to share what the community is about, how it has affected someone’s teaching practice, and to show ways for others who might be curious how to get involved. There is also a call for articles for the 2018 Focus Issue which is on Tool Kits for Early Career Teachers which I think a really wonderful article about #MTBoS could be beneficial.
nctm.png
I wonder if two newbie #MTBoS-ers and two experienced #MTBoS-ers could collaborate on writing it! I am personally interested in having this happen because I think it is a way to spread the word through more traditional channels, and might just pique the interest of a lot of teachers!

(5) Getting Goofy: In addition to things to expand the reach of the #MTBoS, I think there is room for so much more goofy things that can happen (today I saw a tweet that said #keepmtbosweird, copyright @rdkpickle). I don’t know what this might be, but some sort of goofy community building event like twittereen or the great hedgehog sweater run or needaredstamp. A massive picture-based scavenger hunt? A virtual trivia night? A stupid funny poster contest?

(6) Appending #MTBoS to Existing Conferences: A number of people who are going to conferences (e.g. CMC south, Asilomar, NCTM) are planning 2-hour meet-ups with #MTBoS-ers. I think it could even be #MTBoS-ers arrive a day early or stay a day late and have a mini-get together (or even a super mini conference in the hotel!). I’d love a “package” that outlines how to organize one of these meet ups.

(7) Get more contributors to the One Good Thing blog: I love the One Good Thing blog. I would love for there to be more regular and semi-regular contributors. The more voices we have when talking about the joys of teaching math, the better. It has helped me out so much during my saddest and most down days, when I open the blog and see old things I’ve written. And I love reading the joyous elations that other teachers have.

I had one more idea that I have decided I am going to take on… For those who remember them… I am going to bring back Virtual Conferences. I loved the idea of them, and the person who hosted them is no longer doing them… so I’m going to bring them back from the dead!

The ideas above are things I’ve been mulling over. The ideas that came up in our meeting, or on twitter afterwards (using hashtag #ExpandMTBoS) are below (in the pictures or in the storify):

#ExpandMTBoS Storify

These ideas include involving Reddit, making a landing page website/app, creating a MTBoS logo, having teachers tell more of their stories, etc.

Choose something small, like presenting the community to your department or manning the #MTBoS booth at NCTM. Choose something huge, like creating your own conference, or website on (topic x), or writing a book. Or choose anything in between. But if you have the time and inclination, think of a way you can help #ExpandMTBoS! 

If you have an idea of something you want to do, tweet it out with the #ExpandMTBoS hashtag. Get people to help you! And make your idea a reality!

 

My Takeaways from #TMC16

I have all the feels, coming back from #TMC16, but they also have paralyzed me. There’s a disconnect between all the feels, my making sense of all the feels, and my ability to express all the feels in words. I felt paralyzed because I wanted to express things right. Since that was impossible, I did nothing. But to get past that, and because I need to collate the gems and thoughts from the conference to learn from them, this post is going to be a random collection of thoughts. It’s more for me — to consolidate my thinking and write down all the little things — so apologies if it feels like a confusing brain dump.

What are you passionate about? 

Sara VanDerWerf (her blog) gave a keynote that was reminiscent of a keynote last year. She said “What are you an evangelist for?” (For her, one of those things is Desmos, because of the equity and access it allows her kids.) Once you know that thing — the thing you are willing to go to bat for, the thing you want to spread — you should think consciously about how to best evangelize it. That might include having an elevator speech ready for you to give, and being conscious of the different audiences you may be talking with about it (students? parents? teachers? admin?). Being an evangelist isn’t just being passionate… it includes enacting that passion by finding ways to share “the best… with others who can benefit.”

Sara’s fabulous calculator museum (mausoleum!)… all your calculators are dead… all hail Desmos!
20160715_095651.jpg

I know I am an evangelist for the #MTBoS. However in terms of math content or math teaching, I don’t quite know what I’m an evangelist for… yet. All this reminds me the end of this blogpost I wrote last year after TMC, where I was trying to figure out what my “brand” was (and came up emptyhanded). But I have faith that with enough time, I’ll figure it out.

Speaking of evangilism… Jonathan Claydon (his blog) shared a “my favorite” about Varsity Math, a community he’s built up at his school. I’ve had a teacher crush on this guy for years. There’s something about his energy and style and humor, and the fact that he is good at something I am not (yet) good at (being a “relational” teacher)… he’s a must follow. In any case, Jonathan is an evangelist for changing the way kids look at math at his school. Although ostensibly his goal is to increase the numbers of kids taking AP math classes and increase the AP scores of these students, he’s doing it by building a supportive math community — one that feels like a club. He is doing this by creating “shared experiences.” He knows he has succeeded if he can get kids to say “I love (varsity math). (Varsity math) feels like family. You couldn’t understand because you’re not in (varsity math).” The only way the last statement could make sense is if an entire culture is built around (varsity math). Of course what goes in the parentheses is open. Read about his project here. See a photo of @rawrdimus here:

20160716_204313.jpg

This “my favorite” spoke to me. I’ve been consciously working at my school about raising the math department. Not in terms of teaching and learning (I don’t have much say in that), but in terms of getting kids engaging with math outside of the math classroom. I brought the New York Math League contest to school, I’ve worked (with another teacher) to concertedly increase the number of students taking the American Math Competition each year (from around a dozen to seventy+). I found a non-stressful virtual math team competition that students can compete in so that they can fit it in their busy schedules. I have co-advised math club for years. I started Intersections with a science teacher, a math-science journal for students to submit their works to (it’s now four years old!). Lots of things… I want spaces and times for students to engage in math outside of the classroom. But with all of this, I don’t see a culture of kids who geek out about math. There isn’t a community or culture around doing mathematics at my school. And Jonathan’s talk helped me realize that I have to think intentionally about building a community. It is more than “if you create it, they will come.” It isn’t the event or space that I design, but the “shared experience.” What does this mean? What does this look like? I don’t know yet. But perhaps having a student-created chant before each virtual math team competition, bonding field trips (math movies? museum of math? math scavenger hunt?), swag as proud identifiers, a wall of fame…

[Update: I was having trouble figuring out what precisely I want to accomplish in my school. And today is day 3 of a crazy math frenzy day where I’m having fun exploring and writing lesson plans and playing around and coding and getting stuck and getting unstuck and having frustration and elation — so much elation. And then I read this post by Annie Perkins, which talks about a sort-of-crisis I’m having (posts here and here). And in my current haze, I see the glimpses of what I want to achieve. Why do I want kids to engage with math outside of the classroom? Because it’s beautiful and fun to play with and just play mind-blowing cool. But they don’t get that in the classroom — at least not regularly enough. Jonathan created a community of kids who were vested in AP math. I think I want to figure out how to create a community of kids that love to (a) be exposed to interesting/strange things about math, and (b) play with math and explore it. Less “math team tricks” and “competition problem solving strategies” and more pure unadulterated fun. Things like this fold and cut problem that I did in geometry. Or generating and analyzing their own fractals. Taxicab geometry. And I think lecture might be okay for some of this — a lecture on infinity or Godel’s incompleteness theorem. Or following some internet instructions on how to build a planimeter out of a sodacan to calculate the area of a blob just by tracing around it. Or going as a group to a math lecture at the Museum of Math. Or learning about higher dimensions. Whatever! I want to get kids to geek out about how cool and fun math can be. I want a math is cool community, where there is a culture of nerd-sniping and geeking out and regular mind-blowing-ness. The truth is I probably don’t have time this year to come up with a plan to execute this to make it happen this year. I also think that the lack of free time that kids have in their schedules might make any plan of mine totally impossible. But I think it’s worth brainstorming… maybe not for this year… maybe for next year.]

Desmos Features:

At the Desmos preconference, I learned about three things

(1) “Listening to graphs.” This feature was included for vision impaired students, but I think many of us teachers started dreaming up other uses for it. To get a sense of it, check out this piece (done by Rachel Kernodle and James Cleveland) playing “Mary Had A Little Lamb” (click on image):

mary

 

To play (at least on a mac), press COMMAND F5 (which enables voiceover), go to the fifth line and press OPTION T (to tell the computer to “read” the graph with sound), and then press H (to play the graph). When it’s done, you can turn off voiceover by pressing COMMAND F5 again.

Some thoughts… Have the audio for some periodic and non periodic functions, and have kids do an audio function sort? Play audio of graphs (without telling kids that) and have kids do a notice/wonder (before sharing what they are listening to). Have kids identify if a graph has a horizontal asymptote for end behavior from an audio file? Have kids identify which graphs might have a vertical asymptote from an audiofile?  Play sine and cosine (or secant and cosecant) and have kids not be able to tell which is which (because they are just horizontal shifts of each other). Have kids devise their own piecewise functions and play them, while other kids have to graph them. Create a piecewise function and have a student who enjoys singing to sing it? I am not convinced that anything I’ve thought up could help a deeper understanding of any topic, but I also don’t think it could hurt. Some kids might really get into it and enjoy playing with math…

(2) Card Sort: You can create card sorts in desmos now! Check a bunch of them out (that were created at the Desmos pre-conference)! Or if you just want to go to one of them, click on the image of Mattie Baker’s card sort on visual sequences:

mattie.png

To gain this functionality on your desmos account, go to teacher.desmos.com and click on your name in the upper right hand corner, click on LABS, and then turn on Card Sort.

sam

(3) Marbleslides: You can create your own marbleslides in desmos also! Turn it on in labs (see above). Then you have the capability of building your own! If you don’t know about marbleslides, check out this marbleslides activity made by the desmos folk on periodics.  At least to me, the use of marbleslides is to help students understand function transformations… so I can see it useful for helping kids gain fluency in transformations. (Anyone see another use for marbleslides, that I’m missing?)

Showing Student Work

Hedge talked about how she uses SnagIt to display student work. She takes a photo of student work on her phone, and using an app called FUSE, transfers it to SnagIt (on the laptop) — as long as both are on the same wifi network. Here’s her blogpost showing it in action! It costs money ($29.95) but I trust Hedge!

I attended PCMI years ago, and I recall Bowen and Darryl using this technique (kids working on problems, taking pictures of different approaches) to facilitate discussion to bring different ideas together. Nearing the end of a session, they would project pictures of student work, people would explain their thinking. Bowen and Darryl would sequence the pictures in a thoughtful way. They wouldn’t focus on those who “got the answer” but on various approaches (visual/algebraic) — whether they worked to get the answer or not. I liked that so much, and I suspect SnagIt could allow that to work for me in that way.

Getting Triggy With It! Hands On Trigonometry

 

Fouss gave a wonderful hour long session on making trigonometry hands-on for students. Instead of telling us what she did, we got to do some of the activities, and that was powerful. There were activities I’ve read about that I thought “eh, okay, but it would be more efficient to do X, Y, and Z” and then I did them and I saw how the act of doing them could be helpful. Here are three that we got to do: understanding radians with smarties, creating a unit circle with patty paper, and creating a trig wheel to help kids practice converting between radians and degrees and visualize what the size of the angles look like.

All her materials are linked to from her presentation, and are easily found on this folder on her google drive. I have to scour them to find my favorites. I did love the radian activity. If you make the radius of the unit circle 7 smarties long, then you can have a good discussion on whether 3 radians is 180 degrees or not… (21 smarties won’t quite make it to 180 degrees… but 22 smarties will fit snugly… nicely giving the 22/7 approximation for \pi. Nice!)

Some of the ideas linked to from her presentations that I want to steal:
(a) Trig Stations
(b) Two Truths and a Lie (useful for more than just trig!)
(c) #TrigIs (useful for more than just trig!)
(d) If I choose to do ferris wheel problems, this ferris wheel comparison [but modified to be more challenging]
(e) Desmos’s Polygraph for Sinusoids and Marbleslides for Periodic Functions
(f) If I teach trig identities, use this matching game (and have kids check their answers once they are done by graphing on desmos!)
(g) Headbandz, trig edition! (for graphing trig functions)

Variable Analysis Game

Joel Bezaire presented a great game that can be used in warmups to help students see relationships and patterns. His video on it is here, showing the game and how it is played:

Nominations: Making Work Public

Kathryn Belmont (@iisanumber) gave a great way to have kids really put forth effort on open-ended assignments without using grades as a stick. She will ask kids to do this assignments, and then put their work on their desks. Each student gets posts its, and as they wander around the room, they put post-its on the works they see… They write two accolades for good things, and two ways to push back or improve the assignment. The way I envision this in my classroom, not everyone will see everyone else’s work, but everyone will see 5-6 other students’s work. After the walk about, the teacher says: “Do you have any nominations”? Jake might reply “I would like to nominate Kiara.” If Kiara feels okay about being nominated and “accepts the nomination,” the teacher takes Kiara’s work and puts it under the document camera. Then Jake might say, “Kiara did … and what I thought was so awesome about it was …”

(Her slides for her mini-talk are here. A video of her talk is here.)

The teacher is no longer the sole audience member for the work, and kids are defining what good work looks like. In Kathryn’s classroom, she saw a huge increase in kids putting in effort in these open-ended assignments. (I can see this being useful in my own class, especially when I do my explore math mini-explorations.)

Intentional Talk 

I went to a session by Jessica Breur (@BreurBreur) which was fantastic. Although it was only one hour, I wish it were a morning session. She wants to have teachers establish a culture where students:

  • use the group to move the group forward
  • talk, trust, and depend on classmates and the teacher
  • persist — even in the face of a challenge
  • view math as “figure-out-able” and accessible to all

She highly recommended Cohen’s Designing Groupwork (a book which I have but haven’t read).

To start, over the first week or two, students will be doing lots of groupwork activities. And at the end of them, they will (in their smaller groups) focus on what the group “looks like” “sounds like” and “feels like.” They don’t necessarily need to focus on all three at once — students could focus on “sounds like” during one activity and “feels like” on another. After the week is done, the class comes up with a set of norms in these three categories — where they talk about what successful/good/fun groups look/sound/feel like.

We did a lot of hands-on work trying out some of these groupwork activities — and she has included all of those activities in her slides. Here is one of my favorites:

20160718_150042

This is the red solo cup challenge. A group of 3 or 4 is given 6 red solo cups, stacked inside each other, placed face up on the table (so like a regular drinking up face up). The students are given a rubber band with four strings tied to it (even if 3 students are doing this, keep the four strings). Student must put the solo cups in a pyramid formation. If they finish that, there are other configurations that Jessica includes in her presentations (or students can design their own challenge for others!). Afterwards, the group reflects.

solo

Similar tasks can be done, like 100 NumbersSaving Sam, Four 4s [but making an emphasis that we want as many ways to generate the numbers 1-20, not just one for each], Master Designer, or Draw My Picture.

For more “math-y” things, you can do a Chalk Talk/Graffiti Board– where students answer questions before a unit to activate some old ideas. For example, “What do you know about the number zero?” [In fact, any sort of talking point/debate-y statement can be used here.] Kids write anything and everything they know on a poster in their group of four. Then hand the posters up and students walk around and read other students’ responses (if time, writing their own comments down). Finally, for closure, you can ask students aloud or using exit slips “What are two things you didn’t think about that you saw on the graffiti boards?” Another more math-y thing is a donut percent task. An example is here but I’m confident it could be modified for trigonometry (values of trig functions, identities, etc.) or rational functions (equations and graphs) or any number of things! The idea behinds this is that each person in the group is given four slips of paper, and as a group, four complete donuts have to be created.

Sounds simple? But here’s the rub… group members must follow the rules below to each get their own donut completed.

donut.png
You should keep a poster of the 8 Standards of Mathematical Practice, and every so often during activities or groupwork, ask students which ones they are using.

Once norms are established at the start of the year, you consciously need to be doing activities that practice the norms. Be intentional about it. (If you find that kids aren’t listening to each other, find an activity that promotes listening.)

I loved this session. However what I need now are a set of activity structures that I can fit actual mathematical work into. So things which develop understanding, or practice solving something, etc. And it would be nice not only to have the activity structures, but the activities themselves all in one place (so, for example, activities for Precalculus!).

Talk in the Math Classroom

My morning session was called “Talk Less, Smile More” and was led by Mattie Baker and Chris Luzniak. In the session, they provided various structures to promote math talk in the classroom. I am going to outline some of the ideas that I can see myself using in my classroom.

DEFENSE MECHANISMS & CLASSROOM CULTURE: Most importantly, to get talk in the math classroom involves getting over student defense mechanisms. Students fear being seen as stupid, and they fear being wrong. In order to do this, you have to lower the stakes so kids can temporarily bracket their defense mechanisms to create emotional safety. These could be by doing things like chalk talks (silently writing responses to questions, and responding to other student responses)  or doing notice/wonder activities where all responses are honored. Many of the ideas that Chris and Mattie shared in the session do this, by providing a structure for talking, and a bit of a safety net (often where no response is right, or students are required to give a particular answer and justify it).

When implementing it, you have to be consistent and do these structures fairly often. Start simple, and then get more complicated with the statements/questions. Give a lot of energy and excitement — especially if a student gives a wrong answer or a right answer (“Oh wow, what an interesting thought… let’s explore that…”). If students turn to the teacher and say “Mr. Shah, what about…” sit down and redirect it to the class. (Remember the teacher is not the center… this is about getting kids to be the center!) As teachers, we have to watch our own facial expressions (a.k.a. don’t make a face when you hear a totally wrong answer). You can avoid this (if it’s a problem for you) by looking down at a clipboard when someone is responding.

At the end of a class or a portion of a class with a lot of mathematical talk, do “shout outs” (shout out something they learned, or something someone else said that helped them). And ask kids (to fill out on a card) what they took away from class today (and what questions they still might have). Or “I used to think ____, but now I think _____.”

To give students some crutches when talking, have posters with these simple statement starters to help them (on all four walls):

poster.png

TALKING POINTS: In this session I first got to experience Talking Points. I’ve read about them on Elizabeth Statmore’s blog (see links on the right… a bunch of talking points are hosted in one of her google drive folders). But the truth is: I wasn’t sure how much I could get out of them. Now that I’ve participated in one, I feel differently. This is how they work:

(1) students in a group of 4 get n statements. The first round involves one person reading the first statement, and then say “agree/disagree/unsure” and then explain why they chose that response. They must give the reason. The next person does the same, then the next, then the last. The important part about this is that no one can comment on another person’s reasons. They can just state their own reasons. They can match someone else’s reasons, but they have to be stated as their own.
(2) The second round involves the first person saying “agree/disagree/unsure” (after hearing everyone else’s thoughts) and then they can give reasons involving other people’s thoughts. Others do the same.
(3) The third round is quick and short. Each person says “agree/disagree/unsure” and gives no reasons. Then someone records the tally of the responses.

Here’s an example of what talking points can look like (when they aren’t about math content):

20160722_124705.jpg

Talking points can also be math content related. Instead of “agree/disagree/unsure,” you can use “always/sometimes/never” or some variation that works for your questions. In our mini-precalculus group, we brainstormed some talking points around trigonometry:

talkingpoints.png

After participating in talking points, we as a group came to the following realizations:

  • Talking points were not as repetitive as we thought they would be.
  • The more controversial a statement, the more discussion happens.
  • You were really forced to listen to each other
  • When the talking point includes “I” statements, you learn about other group members
  • They are good for pre-assessments (and can be used before a unit starts, as a prelude)
  • Give n statements, and then leave 3 blank statements. If a group finishes early, they can write their own talking point statements!
  • Afterwards, you should have a “shout out” round. Kids should shout out something interesting/great they learned, and/or the teacher should shout out something good they heard/witnessed!

To debrief:

  • Don’t go over all of the questions. That debrief will feel boring and repetative. Go over some key things you want to talk about immediately, and then revisit the others during the unit. (You want to make sure that kids don’t leave the unit with misconceptions.)
  • Use the tally of A/D/U or A/S/N to see where the controversy lies! (You can collect their slips and talk about them later after seeing their responses…)

CLAIM AND WARRANT DEBATE: In a math class, you want students to justify themselves. To build that justification as central to the class, you can introduce the notions of an argument which is essentially a statement (a claim) made with sound reasoning (a warrant). (This language comes out of the speech and debate world.)

When responding to a question, a student must stand up (even the teacher should sit down) and say “My claim is _______, and my warrant is ________.” If the student messes up, that’s okay, just have them do it again. You have to build this structure as essential to answering questions. (To reduce the fear, you can give students some think time to write something down, or talk in a pair, before doing the claim/warrant step.) When doing this, I am not going to have kids volunteer… I am going to cold call using the Popsicle Sticks of Destiny (names of kids on popsicle sticks… I draw one randomly…).

When introducing claim/warrant, make sure you not only teach the structure, but also have kids who aren’t speaking face the speaker and put their eyes on them. Be explicit about the expectation. You can also have kids summarize another student’s point to make sure they’re paying attention. (If you catch a kid not following the audience instructions, you can walk over near them… if not, you can tap them on the shoulder… or kindly talk with them after class about how “it’s really polite to…”)

To build this up and create this as a routine and class structure, you should do claim and warrant debates every day or every other day at the start of the school year. Use the language “claim” and “warrant” on assessments too!

Types of questions you can ask to get kids started with this:

The best movie is ______.
The most important math topic is ______.
________ is the best method for solving the system y=2x and y=x+1.
[show a Which One Does Belong and say] ______ doesn’t belong.

Notice that each of these don’t have a “right” answer. It lowers the barrier of entry for kids.

One powerful type of question one can create are “mistake” questions. For example:

mistake.png

To extend claim/warrant, you can also create “circle debates” which truly forces listening. One person states a claim/warrant, and then another person summarizes that claim/warrant and then makes their own claim/warrant. This continues. It will sound like: “What I heard is that this statement is sometimes true because …. My claim is ____ and my warrant is ____.”  I think only very open ended questions would be good for this structure.

Another powerful way to extend claim/warrant is to engage is “point-counterpoint.” Let’s say the statement is: “Would you rather have crayons for teeth or spaghetti for hair?” The first person makes a claim/warrant, and the second person (no matter their true feelings) must disagree and make the opposing claim and give a warrant. Then the third person opposes the second person. Etc. It forces students to think of other points of view. In a question like “_____ is the best way to solve this system of equations” it forces students who might only approach a system in one way to consider other methods and justifications for those other methods.

CREATING DEBATE-Y QUESTIONS/STATEMENTS: Use the following words:

debateqs.png

In the session, we took all types of questions (e.g. Graph y=8\sin(2x-4)+1) and came up with debate-y questions based on it (in this example, we said “what number would you change to change the graph the most?” or “what’s the best way to graph a sine function?”). I’m not yet good at this, but I found that even with a little practice and people to bounce ideas around, I’m getting better. We had fun in my group trying to come up with debate-y questions based on this random “do now” that Chris and Mattie found online:

challenge.png

I thought it would be impossible, but the group came up with tons of different ways to convert this to a debate-y statement: (a) without solving, which is easiest to solve? (b) which would you give to your worst enemy? (c) which are similar? (d) rank from easiest to hardest? (e) a 5th problem that would fit this set of equations would be ____ (f) a 5th problem that would not fit this set of equations would be ______ (g) which one doesn’t belong? (h) give -4(x+3)=-6 and ask what the most efficient way tot solve it? and then follow up with “how could you change the problem so that method is not the most efficient?”

After a month or two, the use of claim/warrant may die down. If kids get the idea and are justifying their statements, that’s okay! It’s not about the structure as much as the idea behind the structure!

QUICKWRITE: I love this idea because I make writing integral to my classroom. You give kids a prompt and you tell kids to write nonstop for 2 minutes without editing. They have to continually write. Examples:

write.png

It can help with vocabulary, but most importantly, I see this as a way to get kids to stop overthinking and looking for “the right” answer, and just write down anything and everything without self-editing of their thinking. It’s like a condensed noticing/wondering done individually. I can be used before a debate — to give kids time to think. Or perhaps depending on the question, kids can “shout out” one part of their quickwrite? But doing it at the start of the year — to help kids get comfortable writing in math class in an non-threatening, non-evaluative manner — is such a great idea!

RUMORS:  This idea was stolen from Rona Bondi at all-ed.org. On a notecard/paper, everyone write a response to a question or a couple questions (the one we used is “what is our idea setup of our classroom?” but I think it could be used at the end of class with questions like: “One thing I find easy to understand in this unit is… One question I still have about this stuff we’ve been working on…?” or “The most important mathematical idea from today is …?” or “The best way to approach graphing trig functions is…”).

After everyone is done writing, everyone finds a parter and reads their card, the other person reads their card, and then they discuss. There is a time limit (maybe 60 seconds). Then they swap papers. Everyone finds a second partner, and they read the card in their hand to the other person, and they discuss what is written on those cards (not their own cards) and then swap. This goes on three or four times. This forces listening, it allows ideas to slowly spread, and the papers can be kept anonymous.

ONE INTENTIONAL MISTAKE: [update: a la Kelly O’Shea] Each group of students gets a giant whiteboard and a problem (it could be the same problem as other groups or a different problem). They are asked to solve the problem making one “good” mistake (so nothing like spelling names wrong, transposing a number, or labeling the axes wrong). They then present their solution to another group — playing dumb about their mistake. The other group should ask good questions to help students get at the error. Questions like “don’t you need to add 3 to both sides” is too direct… You need to ask questions which lead the group to see and understand the mistake. So perhaps “what is the mathematical step you used to get from line 2 to line 3, and why is it justified?” might be better.

Interested in Presenting at TMC16?

TMC

We are starting to gear up for TMC16, which will be at Augsburg College in Minneapolis, MN (map is here) from July 16-19, 2016. We are looking forward to a great event! Part of what makes TMC special is the wonderful presentations we have from math teachers who are facing the same challenges that we all are.

To get an idea of what the community is interested in hearing about and/or learning about we set up a Google Doc (http://bit.ly/TMC16-1). It’s a GDoc for people to list their interests and someone who might be good to present that topic. The form is still open for editing, so if you have an idea of what you’d like to see someone else present as you’re writing your own proposal, feel free to add it!

This conference is by teachers, for teachers. That means we need you to present. Yes, you! In the past everyone who submitted on time was accepted, however, this year we cannot guarantee that everyone who submits a proposal will be accepted. We do know that we need 10-12 morning sessions (these sessions are held 3 consecutive mornings for 2 hours each morning) and 12 sessions at each afternoon slot (12 half hour sessions that will be on Saturday, July 16 and 48 one hour sessions that will be either Saturday, July 16, Sunday, July 17, or Monday, July 18). That means we are looking for somewhere around 70 sessions for TMC16.

What can you share that you do in your classroom that others can learn from? Presentations can be anything from a strategy you use to how you organize your entire curriculum. Anything someone has ever asked you about is something worth sharing. And that thing that no one has asked about but you wish they would? That’s worth sharing too. Once you’ve decided on a topic, come up with a title and description and submit the form. The description you submit now is the one that will go into the program, so make sure it is clear and enticing. Please make sure that people can tell the difference between your session and one that may be similar. For example, is your session an Intro to Desmos session or one for power users? This helps us build a better schedule and helps you pick the sessions that will be most helpful to you!

If you have an idea for something short (between 5 and 15 minutes) to share, plan on doing a My Favorite. Those will be submitted at a later date.

The deadline for submitting your TMC Speaker Proposal is January 18, 2016 at 11:59 pm Eastern time. This is a firm deadline since we will reserve spots for all presenters before we begin to open registration on February 1st.

Thank you for your interest!

Team TMC – Lisa Henry, Lead Organizer, Mary Bourassa, Tina Cardone, James Cleveland, Cortni Muir, Jami Packer, Megan Schmidt, Sam Shah, Christopher Smith, and Glenn Waddell

 

Jump in the online math teaching community!

A number of years ago, I had the idea of starting a little program to help those interested in starting a blog do so. And we’ve had some fun variations on a theme in the past few years.

Right now, we’re launching it again … but with an awesome twist!

There are going to be two things going on simultaneously.

Those who are comfortable blogging and tweeting, we’d love for you to sign up to be a mentor for someone just dipping their feet into the online math teacher world! You will be a person that newbies can ask questions to, connect ’em with people and blogs they might find interesting, and be a cheerleader as they get involved.

Those who are new are going to have someone help you out. You will be able to have a trusted person to ask questions to, help you find things that will be interesting to you, and encourage you. And through this, you’ll get to see if the online math teacher community has anything to offer that you want. You’ll get to dip your feet in, with no pressure, and a lot of support!

In December, we’ll pair up mentors and mentees. And during that time, we’ll all work on introducing those new to the online math teacher world to what we have to offer.

In January, we’ll have a 4 week “blogging challenge,” with prompts for both new and experienced bloggers.

If you’re interested in finding out more, or you’re ready to sign up to be a mentor or to get your feet wet checking out the online math teacher world (known as #MTBoS which is the unwieldy acronym for mathtwitterblogosphere), check out the exploremtbos website.

Huzzah!

PS. Please spread the word, if you can!

The betterQs blog: A new #MTBoS adventure

For the past few years, I’ve been (sometimes daily, sometimes sporadically) posting on the one good thing blog. Last year I did it every single day. Often times it was a short post, especially in tough days where it was hard to find some little nugget. But what I loved was that it made me reflect consciously on joy and goodness, and pay attention to it. [1]

This year I want to spend some time thinking about how to question well. More specifically, thinking intentionally about what questioning looks like (and how it can be improved) in my classroom — both on my end and on my students’ end. I thought I would blog about it throughout the year, and figured it would be fun to blog with others. @rdkpickle had the same idea! So we figured it was a good idea, and set up a collaborative blog. All this is to say:

Check out the blog! Add it to your feedly or googlereaderreplacement. You’ll get posts by many people delivered right to your door.

unnamed

But more importantly…You are warmly and heartily welcome to join us, and become an author. The blog just started and we’d love to get as many voices and experiences going on the ground floor.

unnamed

Read a few posts. Browse a bit. It’s only a few days old, so there isn’t too much to gander at! And consider joining us. (If you want, there’s a tab at the top of the blog that tells you how to join, or just click here. We’ll add you as an official author!)

“But Sam,” you say, “I don’t have time to write every day…”

Silly goose, I respond! You can write however frequently works for you. Once a week? Once a month? Three times a year? The point is to take some time — however much of it — to think about questioning in your classroom.

“But Sam,” you say, “I don’t have a lot to write about…”

Silly turkey, I shoot back! I think it would be cool if you even wrote down a single question that you really loved asking because it provoked discussion. No need to deeply analyze it if you don’t want! Maybe a teacher reading the blog will read that question and think: “YAS! THIS IS EXACTLY THE QUESTION I NEEDED!” And if there were a lot of people just throwing down their good thought-provoking questions, we would soon have an amazing repository.

“But Sam,” you say, “I have a blog of my own! Why don’t I just post it there?”

Silly quail, I reply! You can post anything to do with questioning both on your own blog, and on this blog. No rule against that! In fact, I did that for my first post on the betterQs blog. And that way, someone reading the betterQs blog might get to know you and your own blog!

“But Sam,” you say, “I’m still scared… I don’t want to sign up and then not do it.”

Silly emu, I say. Why not take a baby step and just commit yourself to writing one or two things? Just keep a lookout in your school about how you question, or try to script a good question and see how it goes in your classroom, or rewrite a test question and explain how you rewrote it and why… Baby emu steps. And just see how it goes! You just might think: hey, questioning is something I want to pay just a bit more attention to!

Or, silly emu, don’t worry about signing up! As I wrote a couple years ago: “You should never feel guilty engaging with the community in ways that make sense to you. We’re all coming at teaching from such different places in our careers, such different backgrounds, and such different environments. We all need and want different things.” In other words, you do you.

[1] I also love the fact that because I’ve been using the blog semi-regularly, I can see an archive of so many good things of my own (in addition to seeing everyone else’s good things). On down days, it really helps me remember I’m not as bad as my brain tries to convince me I am.