I posted this on my Adv. Precalculus google classroom site. I don’t know if I’ll get any responses, but I loved the problem, so I thought I’d share it here.

***

I mentioned in class that I had stumbled across a beautiful different proof for the double angle formulae for sine and cosine, and I would post it to the classroom. But instead of *giving* you the proof, I thought I’d share it as an (optional) challenge. Can you use this diagram to derive the formulae? You are going to have to remember a tiiiiny bit of geometry! I already included one bit (the 2*theta) using the “inscribed angle theorem.”

If you do solve it, please share it with me! If you attempt it but get stuck, feel free to show me and I can nudge you along!

***

Below this fold, I’m posting an image of my solutions! But I say to get maximal enjoyment, you don’t look further, take out a piece of paper, and take a stab at this!

On Friday in one of my Advanced Precalculus classes, kids were working on figuring out the double angle formulas for sine and cosine. They got and .

And then… they got stuck.

You see, I showed them two alternative forms for the double angle formula for cosine ( and ). I showed them these forms. And I said: figure out where they came from.

All groups in a few minutes were on yellow cups (“our progress is slowing down, but we’re not totally stuck yet”). I didn’t want to give anything away, but I didn’t have any group have a solid insight that I could have them share with others. I let things remain a bit more, no luck, so then I said: “this looks related to something we’ve seen before… a trig identity… maybe that will be helpful. Bring in something you know to open up the problem for you.” Eventually kids realized they needed to bring in some outside information (namely: ).

I was sure that was going to be enough. Totally certain. But after another 5 minutes of watching them struggle, I wasn’t so sure. I didn’t want to give anything more away, but I had to because we had to move forward. But what more could I give without giving the whole show away? Since many groups were trying some crazy stuff, I said: “this is a simple one or two step thing…” Why? I just wanted them to take fresh eyes and see what they could do thinking simply. They kept on saying I was trying to trick them, but I told them it wasn’t a trick!

And then, in the span of the next five minutes, all my groups got it.

But what was more interesting was that we had three different ways to do it. As kids moved on to the next set of questions (and I breathed a sigh of relief that they figured this out), I reflected on how awesome it was that they persevered and then came up with different approaches. So while they worked, I put up the three different approaches.

And with a few minutes to go at the end of class, I had everyone put everything away and I just pointed out the embarrassment of riches they came up with. And it was great to hear the audible reactions when kids who had one way saw the other ways and say things like “ooooh, I never would have thought of that!” or “that’s so clever!”

I had (have?) so many mixed feelings when I saw how difficult this question was for my kids. And I was hyperconscious about how much time we had to spend on this. But the ending made me feel like it was time well-spent.

So I’m at #TMC17 and Rachel Kernodle nerdsniped me. Or rather, I asked to be nerdsniped. Her session is at a time when there were a lot of other amazing sessions I wanted to go to, so I wanted to know if hers was one where I could hear about it and get the gist of things instead of attending. After some internal debate, she said that since it involved working on a problem, and then using that problem solving to frame the session, the answer was maaaaybe not. But then she thought: maybe I can try the problem on you and see how it goes. As long as you’re willing to put in the time to problem solve. Of course I said yes.

First, you can see her session description, which then framed how I approached the problem:

And then this is what she gave me (but it was hand drawn):

From the session description, I knew I had to find the ratio of the side lengths, so I could find exact trig values for angles other than 30, 60, 90, 45.

Rachel also gave me a “hint page” which she told me to look at when I was stuck (and to time how long it took me before I opened it). Let’s just say I’m extremely stubborn, and so as long as I think I have the capability to solve something and I am not completely stuck, I knew I wasn’t going to open it. Turns out my stubbornness paid off, and I ended up solving it.

In this post, I wanted to write a little bit about my experience with the problem. Because now when I look at that triangle, I have an duh, there’s an obvious approach to use here and everything I know points at that obvious approach. And the answer feels really obvious too. It is funny that I’m almost embarrassed to post this because there are going to be people who see it right away, and I worry (irrationally) (math pun) that they are going to judge me for not seeing it as quickly as they did. Even though I know being good at math has nothing to do with speed. And that it was important to go through the steps I did!

It took me over an hour to solve this problem. I had to do a lot of play and make a lot of random leaps before I stumbled across the “obvious approach.” And I needed to do that in order for me to mine it for lots of things. It was true problem solving. And I know I really deeply understand this because at first the problem looked flummoxing and interesting, and now it looks obvious and somewhat trite. That’s my metric of how I know I deeply understand something. There are still certain things that I teach that I don’t deeply understand: like how the cross product of two 3D vectors yields a third vector perpendicular to the original two. I have done the math, but it’s non-obvious to me why the crazy way we compute cross products give us something perpendicular.(When I only understand something by doing brute algebra, I rarely feel like I get it.)

I’m going to try to outline the messiness that was my thought process in this triangle problem, to show/archive the messiness that is problem solving.

The first thing I noticed was 36 and 36 sum to 72. So I was like: obviously put two of those figures together, and just play around. Something nice will happen. I remember when seeing the problem that approach felt immediate, obvious, and would lead to the solution. I was like yes! I have an inroad! This is going to rock, and I’m going to solve it quickly! And I’ll even impress Rachel!

That appraoch didn’t work. Nothing popped out. I saw 54s and 18s and 144s pop out. But those weren’t angles that helped me. But I did then realize something nice… 36 is a tenth of 360! So I was going to use a circle somehow in this solution. Obviously!

So I drew this:

and I was like, I have something here! But after looking around, I was getting less. You can see I was trying to draw in some other lines lightly and play around — I thought maybe creating other triangles within these triangles would work. But nothing seemed to pop out. At one point, I thought I had possibly created an equilateral triangle in this (even though I saw one of the angles was 72! I was clearly desperate!). I started to get dejected at this point.I knew the circle had something to do with it…

But seeing that 54s and 18s and 36s and 72s kept appearing, I thought maybe algebraically I should play around with the numbers (adding in 180 also, since I can draw a straight line wherever) to see if algebraically I could get a 30, 60, or 45. I tried adding and subtracting numbers from the set {18, 36, 54, 72, 180} looking for 30, 60, or 45. I figured if I could somehow do that, then I could find a diagram that would have angles I could get side relationships from. And then like a domino effect, I could get others. I don’t know. But after like 2 seconds, I got bored with this and didn’t see it as very efficient. My intuition was strongly saying I was going in the wrong direction. So I stopped:

At this point, I was pretty dejected. I was slightly losing interest in the problem, thinking it was too hard for me. I tried to “force” a 60 degree angle in a diagram of that original blasted triangle. Hope! And then hope dashed!

Damnit! I know the circle had something to do with it. It is just too nice to abandon the circle! Maybe…

At first I drew all ten vertices for a 10-gon. I started connecting them in different ways. I thought I could exploit the chord-chord theorem in geometry, but that wasn’t good. I tried in that second diagram to extract part of the circle diagram and investigate it more. And the third was just more of the same. At one point, I was like and was thinking I could somehow think of this as a problem on the complex plane, where each vertex was and then look at the real parts for the x-coordinate and the imaginary parts for the y-coordinate. Clearly my mind was whirring, and I was going anywhere and everywhere. I actually thought maybe this complex plane thing seems ugly but it will be so elegant. But then I realized I didn’t know where to go if I labeled each of the points on the complex plane. Done and done and done. At this point I put the problem away. Nothing was working.

But after a minute, I couldn’t let it go! I wanted to solve it!!! So I went back. I thought I was getting too complicated, so I went simple.

Nope. Didn’t help. But for some reason, this diagram and looking at the 72 reminded me of something I hadn’t thought of before. This is the leap that helped me get to the answer. And I can’t quite explain why this diagram sparked this leap. Which sucks because this is that moment that led to the rest of the problem for me! But I immediately remembered something about 72s and pentagons. And it hit me.

So I drew what this connection was. My brain was whirring, and I was somewhere good…

I remembered the 72 degree angle appeared in a star. And this star was related to a pentagon. And that the pentagon had something about the golden ratio tied up in it. So I knew that maybe the golden ratio was involved in the answer. And where does the golden ratio appear? When there are similar triangles and proportions. I had my new approach and my inroad that I thought would work. Two triangles next to each other failed. Circles failed. But star/pentagon might work!

So I looked at the original triangle and tried to figure out where I could find a similar triangle. And so I drew one line and created a similar triangle. I labeled the two legs as having length “1.”

Initially, I was thinking I could do something with the law of sines. Because if you think about it, this is the ASS case — where you have that 36 degrees (circled), the side I labeled 1 (circled), and the other side I labeled y (circled). But you note that last side could be in two different places, which is why there are two ys circled. I still think there is something fun that I could do with this. But as I was doing this, I realized I was making things more complicated.

I knew that the golden ratio came out of a proportion. So I abandoned the law of sines for the proportion. I simply set up a proportion with the two similar triangles. I first found “?” by doing . So ? was . This was exciting. I knew the golden ratio came out of solving a quadratic. Yeeeeee! At this point, my excitement was growing because I was fairly confident I was almost at the solution.

Then I labeled the part of the leg that wasn’t ? as (since the whole leg length was 1). Finally I looked at the third triangle in the diagram that wasn’t similar to the original triangle. It was isosceles and has legs of and so I set them equal and solved and not-quite-the-golden-ratio came out! (There was a mistake I made where I set and got . But I then found it and rewrote the equation . This was the most depressing part of it. Because I couldn’t find my error because I was so tired. I went through my work multiple times and nothing. But taking some time away and then looking with fresh eyes, it was like: doh!)

And so that was the end. I found if the original triangle had leg lengths of 1, the base was going to have a length of .

I was so proud. I was on cloud nine. I was telling everyone! SO COOL!!!

It probably took me in total 90 minutes or so from start to finish. So many false starts at the beginning, and one depressing transcription error that I couldn’t find.

The point of this post isn’t to teach someone the solution to the problem. I could have written something much easier. (See we can draw this auxiliary line to create similar triangles. We use proportions since we have similar triangles. Then exploit the new isosceles triangle by setting the leg lengths equal to each other.) But that’s whitewashing all that went into the problem. It’s like a math paper or a science paper. It is a distillation of so freaking much. It was to capture what it’s like to not know something, and how my brain worked in trying to get to figure something out. To show what’s behind a solution.

I have to say that we’re doing some pretty neat stuff for trig this year in precalculus. I’m working with two other teachers and totally writing everything we’re doing from scratch. I had about 3 days to teach solve some basic trigonometric equations. They are basic. Like . But we’ve put a lot of thought into what we’re teaching, how we’re teaching it, and why we’re teaching it — and more complicated trig equations just didn’t make the cut. [1]

Besides not-a-lot-of-time, the other bugaboo I was contending was how to deal with inverse trig. Long story short, I’ve found a way to teach inverse trig which makes me fairly happy in my advanced precalculus class. But because of our time constraints, I decided that we could get my standard precalculus kids solving trig equations without understanding the theory behind the restricted domain of inverse trig functions. :) Why? They learned years ago in geometry that if they have a triangle like the one below

they could get an angle, like angle , by writing: . And then using the inverse of sine, they could get . They know about the inverse trig functions already. So I wanted to exploit that fact. And if organically a question about what the calculator was doing when spitting out an answer, and why it only gave one answer, I promised myself I would address it. (This year, no question like that arose.)

A quick last note, before I shared how I approached these few days in class, I decided to totally eliminate the use of the term “reference angle.” Kids would discover the relationships among the solutions of trig equations on their own. No need for new terminology here. Just logic.

Day 1: Three important “do nows”

This led to a great discussion. Every group decided the “top left equation” was going to be the easiest. And every group decided that the log and tangent equations were going to be the hardest. When I pressed them on why, they said it’s because they forgot logarithms from last year, and that tangent was just kinda tricky. They could “undo” a square root or a square, but they didn’t really know how to “undo” a logarithm or tangent function.

Next I threw up this slide. I just wanted to remind kids that sometimes there are more than one solution to equations — even simple equations they know. I also wanted them to see that they knew something about the tangent equation. They knew it had infinitely many solutions — even though they might (right now) know what those solutions are!

Finally, I wanted to do a serious review of special angles and their relationship with the unit circle. So I had kids spend 5 minutes solving these basic trig equations.

Obviously I put the unit circle on there as a prompt to get them thinking. And YES, that last trig equation, with the 3/7ths, was done on purpose. I asked kids after they got stuck on it if there were some of these they would not want to appear on a pop quiz. They all recognized that the 3/7th one was bad because it wasn’t one of the coordinates associated with the special angles.

Kids had good conversations and were able to solve equations like and using the unit circle/protractor, a detailed graph of the sine and cosine waves, and using their calculators to get fairly precise answers.

Their nightly work was simply to finish the sine and cosine questions in Part 1 (questions #1-4).

Day 2: Expanding Understanding

I started with an awesome “do now.”

I thought this was going to be a quick 4-5 minute discussion. But kids took 3-4 minutes just to really talk in their groups. And I had them share their thinking. It led to kids talking about “efficiency” and “conceptual understanding” themselves! They all pretty much though the unit circle was the best way to solve it — even with the annoyance of the protractor — because they liked the conceptual understanding it provided. They thought the calculator did the work quickly, and was more accurate, but it annoyingly only gave one of the solutions (so you had to use logic and the unit circle to figure out the second solution), and you could easily forget the meaning of what you were doing. I was so proud of what they were saying. Super awesome metacognition! All in all, this was probably 7-8 minutes.

Then I let them loose on the tangent questions in the packet (Part I #5 and 6). They initially had to solve using a protractor. Every single group remembered tangent represented slope. Most groups reasoned that if , they would get and as their solutions. And since this slope was slightly greater than 1, the angles would be slightly different, just a few degrees higher. It was lovely. (And exactly what I hoped would happen, which is why I chose to use 1.1 in the equation.) But one group literally drew a line with a slope of 1.1 and measured the angles associated with that. I wasn’t surprised that a group did that, but I expected a few more to do so. (I had this group share their thinking with the rest of the class, at the end of the period.)

Then kids spent the rest of the class working on select questions in Part II (8, 9, 11) and Part III (13, 14, 15).

For nightly work, kids finished any of those problems (#8, 9, 11, 13, 14, 15) that they didn’t finish up in class.

Day 3: Polishing Things Off

I started with a question that I wanted to reinforce after the previous class:

We did a bit of review of some unrelated Algebra II ideas to help set them up for our next unit on polynomials. And then…

… to work! I had kids discuss problem 13 in their groups first (since I could see that being a place where a kid, at home, might get trapped… and I wanted them to use each other to get unstuck). And then they compared their answers to the other nightly work questions — and used a solution sheet I gave them to see if they were correct. Then I set them loose on using Desmos to do Part IV. The rest of the period was spent working on finishing up the problems that weren’t assigned in the packet (the ones they skipped).

Pretty much all groups were working together amazingly, and when I went around to check in on different groups, everyone was getting all the questions correct. The biggest problem was actually finding a good window in Desmos! If that’s the biggest problem, I’m golden.

What I loved:

Okay, so I’m going to toot my own horn here. Although the packet may “look” simple, I have to say the only way to see why it’s so awesome is to actually do it. The choice of having kids solve and then immediately solve was on purpose, to generate good conversations with kids about reference angles without using that term. The choice of was done specifically to exploit their understanding of . And the fact that they’re constantly looking at the same question through three different lenses (unit circle, wave, calculator) is deliciously sweet. And then — at the very end — they get to see the solution a fourth way, by using Desmos to graph these equations to find a solution? SO COOL. Because the very last thing we had done in this class was learning transformations of sine and cosine graphs! [2]

This packet, and associated “do nows” and conversations, did what I was hoping for. It highlighted multiple representations. It had kids thinking deeply about the meaning of sine, cosine, and tangent. It had kids develop a way to understand multiple solutions to trig equations by simply using logic and what they know. It had kids recognize that the more they understand trigonometry, the more ways they have to solve a trig problem. And no kid got derailed because they didn’t understand inverses deeply.

[1] I could argue a case for these type of equations, as well as a case against them. But considering our goals and what we’ve already done with trig, I think we’re making the right decision. Why? Because our goal isn’t solving algebraic equations writ large, and I could see solving something like being useful for that. But for getting a deeper understanding of the trigonometric functions? I see less value. (Not no value, mind you, but less…)

[2] We did this in a deliciously marvelous way. I hope to blog about it!

In Precalculus, we’re working on solving basic trigonometric equations. A student was working on this problem:

And he made an error on his calculator and accidentally typed . He got an output of . I think he realized his error when comparing his answer to his partner, who typed in the right expression into his calculator: .

And his curiosity was piqued. Was it a coincidence that the two results were the same?

Of course my curiosity was piqued too. How could it not be? And his question led me to trying to figure this out on the fly. Why were the two results so close? A difference of about . I tried to wrap my head around that… Even in the context of these results, that is so miniscule!

So in this short post I’m going to share what I did at this moment. In total, this took about 3 minutes.

I acknowledged it was so bizarre that the two results were so close, and that the question of why that might be was an awesome question. I said to the student: let me share how I’m going to think about this with you, and maybe we can figure this out.

I throw desmos on the screen. The rest of the kids are working in their groups on something else, so I’m just working with this one kid and his partner. I switch desmos to degree mode, get a good window, and type in the following:

I zoom in around y=-0.1.

and then I make the sine curve disappear, so we only saw the tangent curve. And then I made the tangent curve disappear, so we only saw the sine curve. I said: “if these curves weren’t different colors, would you be able to tell them apart?” (Leading question. Obvious answer prevails. No.)

So I said: it’s weird that around here, for small angles, the sine graph and tangent graph look the same. But that’s not true for most angles. So I’m wondering what it is about sine and tangent which make them both similar for small angles.

And then it strikes me. So I share my insight: “What is the meaning of tangent again, graphically?” And we review that tangent is slope, which is steepness, which is rise over run, which is y over x, which is sine over cosine.

So I write on the board: And I say: let’s look at what happens for input angles close to . And here he has the insight that for these angles, the denominator is really close to 1. So we’re left with . [1]

I was elated at this. At the question, and positively giggly that I was able to figure it out using graphing and simple logic. And I remember saying that “This was the most interesting math thing I’ve thought about this whole week! Thank you!”

Why did I want to write a blogpost about this? Not because it was a good learning experience for the kid who asked it. I literally did all the thinking and shared my insights as I had them with him. (So it shows him he has a teacher who values his questions and enjoys problem solving, but it didn’t really push forward his content knowledge much.)

The reason I wanted to write it is because I immediately saw that this could be an amazing learning opportunity for students next year if I design it carefully. I could see spending a good 20 minutes of class on this question. I give groups giant whiteboards. I give them a prompt (which I will draft below). I have some hint envelopes at the ready. And I encourage the use of desmos (which would encourage some graphing work!).

Last year I had a student who accidentally typed something incorrectly in his calculator. He typed instead of . He realized he had an error only after doing a super careful comparison of his answer with his partner. Their answers differed by a minuscule amount, a mere 0.03 degrees. Imagine that angle! How small that difference in angle is! This student was left wondering if this was just a strange coincidence or not. It turns out that it is not a strange coincidence, and there is a reason that the two outputs were super similar. Your task is to figure out why! Use Desmos! Talk to each other! Go to the whiteboards! Exploit what you know about sine and tangent! Figure out what the devil is going on!

What I love about this question is that its concrete, but also brings up so much conceptual knowledge. Kids have to understand what inputs and outputs of inverse trig functions are. Kids have to know what sine and tangent represent on a unit circle. Kids might even look at graphs! But I could see different groups getting at an explanation in two different ways… Some using a unit circle. Some using desmos like me. And maybe some using some method I haven’t thought of!

I also thought what a fun question this could be if translated for a calculus class. A consequence of the fact that the graphs look the same for small angles is that their derivatives will also look the same for small angles. And also the taylor series approximations for sine and tangent will be similar-ish — for the lowest order term, in any case!

[1] Admittedly some handwaving here. That’s why we have calculus!

TL;DR: If you have an extra 45-60 minute class and want to expose your 9th/10th/11th/12th graders to a mindblowingly huge number and show them a bit about modern mathematics, this might be an option!

In one of my precalculus classes, a few kids wanted to learn about infinity after I mentioned that there were different kinds of infinity. So, like a fool, I promised them that I would try to build a 30 minute or so lesson about infinity into our curriculum.

As I started to try to draft it — the initial idea was to get some pretty concrete thinkers to really understand Cantor’s diagonalization argument — I decided to build up to the idea of infinity by first talking about super crazy large numbers. And that’s where my plan got totally derailed. Stupid brain. At the end of two hours, I had a lesson on a crazy large number, and nothing on infinity. You know, when that “warm up” question takes the whole class? That’s like what happened here… But obvi I was stoked to actually try it out in the classroom.

In this post, I’m going to show you what the lesson was, and how I went through it, with some advice for you in case you want to try it. I could see this working for any level of kid in high school. Now to be clear, to do this right, you probably need more than 30 minutes. In total, I took 35 minutes one day, and 20 minutes the next day. Was it worth it? Since one of my goals as a math teacher is to try to build in gaspable moments and have kids expand their understand of what math is (outside of a traditional high school curriculum): yes. Yes, yes, yes. Kids were engaged, there were a few mouths slightly agape at times. Now is it one of my favorite things I’ve created and am I going to use it every year because I can’t imagine not doing it? Nah.

We started with a prompt I stole from @calcdave ages ago when doing limits in calculus.

Kids started writing lots of 9s. Some started using multiplication. Others exponentiation. Quite a few of them, strangely, used scientific notation. But I suppose that made sense because that’s when they’d seen large numbers, like Avagadros number! I told them they could use any mathematical operations they wanted. After a few minutes, I also kinda mentioned that they know a pretty powerful math operation from the start of the school year (when we did combinatorics). So a few kids threw in some factorial symbols. Then I had kids share strategies.

Then I returned to the idea of factorials and asked kids to remind me what was. Then I wrote . And we talked about what that meant (). And then etc. FYI: this idea of repeating an operation is important as we move on, so I wouldn’t skip it! They’ll see it again in when they watch the video (see below). While doing this, I had kids enter on their calculator. And then try to enter . Their calculators give an error.

Yup, that number is super big.

Then I introduced the goal for the lesson: to understand a super huge number. Not just any super huge number, but a particular one that is crazy big — but actually was used in a real mathematical proof. And to understand what was being proved.

Lights go off, and we watch the following video on Graham’s number. Actually, wait, before starting I mention that I don’t totally follow everything in the video, and it’s okay if they don’t also… The real goal is to understand the enormity of Graham’s number!

I do not show the beginning part of the video (the first 15) because that’s the point of the lesson that happens after the video. While watching this, kids start feeling like “okay, it’s pretty big” and by the end, they’re like “WHOOOOOOAH!”

Now time for the lesson… My aim? To have kids understand what problem Ronald Graham was trying to understand when he came up with his huge number. What’s awesome is that this is a problem my precalculus kids could really grok. But I think geometry kids onwards could get the ideas! (On the way, we learned a bit about graph theory, higher dimensional cubes, and even got to remember a bit about combinations! But that combinations part is optional!)

I handed out colored pencils (each student needed two different colors… ideally blue and red, but it doesn’t really matter). And I set them loose on this question below.

It’s pretty easy to get, so we share a few different answers publicly when kids have had time to try it out. The pressure point for this problem is actually reading that statement and figure out what they’re being asked to do. When working in groups, they almost always get it through talking with each other!

One caveat… While doing this, kids might be confused whether the following diagram “works” or if the blue triangle I noted counts as a real triangle or not:

It doesn’t count as a real triangle since the three vertices of the triangle aren’t three of the original four points given. During class I actually made it a point to find a kid who had this diagram and use that diagram to have a whole class conversation about what counts as a “red triangle” or “blue triangle.”. Making sure kids understand what they’re doing with this question will make the next question go more smoothy!

Now… what we are about to do is super fun. I have kids work on the extension question. They understand the task (because of the previous one). They go to work. I mention it is slightly more challenging.

As they work, kids will raise their hand and ask, with trepidation, if they “got it.” I first look to make sure they connected all the points with lines. (If they didn’t, I explain that every pair of points needs to be connected with a colored line.) Then I look carefully for a red or blue triangle. Sometimes I get visibly super excited as I look, saying “I think you may have gotten it! I think you may… oh… sad!” and then I dash their hopes by pointing out the red or blue triangle I found. (So here’s the kicker: it’s impossible to draw all the line segments without creating a red or blue triangle… so I know in advance that kids are not going to get it… but they don’t know this.) After I find one (or sometimes two!) red or blue triangles, I say “maybe you want to start over, or maybe you want to start modifying your diagram to get rid of the red/blue triangle!” Then they continue working and I go to other students.

(It’s actually nice when students try to modify their drawings, because they see that each time they try to fix one thing, another problem pops up. They being to *see* that something is amiss!)

This takes 7-8 minutes. And you really have to let it play out. You have to ham it up. You have to pretend that there is a solution, and kids are inching towards it. You have to run from kid to kid, when they think they have a solution. It felt in both classes like a mini-contest.

Then, after I see things start to lag, I stop ’em. And then I say: “this is how you can win money from your parents. Because doing this task is impossible [cue groans… let ’em subside…] So you can bet ’em a dollar and say that they can have up to 10 minutes.!That it takes great ingenuity to be successful! What they don’t know is… you’re going to get that dollar! Now we aren’t going to prove that they will always fail, but it has been proven. When you have six or more dots, and you’re coloring all lines between them with one of two colors, you are FORCED to get a red or blue triangle.” [1]

Now we go up a dimension and change things slightly. Again, this is a tough thing to read and understand so I have kids read the new problem aloud. And then say we are going to parse individual parts of it to help us understand it.

And then… class was over. I think at this point we had spent 35 minutes all together. So that night I asked kids to draw all the line segments in the cube, and then answer the following few questions:

These questions help kids understand what the new problem is saying. In essence, we’re looking to see if we can color the lines connecting the eight points of a cube so that we don’t get any “red Xs” or “blue Xs” for “any four points in a plane.” Just like we were avoiding forming “red triangles” and “blue triangles” before when drawing our lines, we’re now trying to avoid forming “red Xs” and “blue Xs”:

So the next day, we go over these questions, and I ask how this new question we’re working on is similar to and different from the old question we were working with. (We also talk about how we can use combinatorics to decide the number of line segments we’d be paining! Like for the cube, it was and for the six points it was etc. But this was just a neat connection.) And then I said that unlike the previous day where they were asked to do the drawings, I was going to not subject them to the complicated torture of painting all these 28 lines! (I made a quick geogebra applet to show all these lines!) Instead I was going to show them some examples:

It’s funny, but it took kids a long while to find the “red X” in the left hand image. Almost each class had students first point out four points that didn’t form a red X, but was close. But more important was the right hand figure. No matter how hard you look, you will not find a red X or blue X. Conclusion: we can paint these line segments to avoid creating a red X or blue X. Similar to before, when we had four points, we could paint the line segments to avoid having a red triangle or blue triangle!

So now we’re ready to understand the problem Graham was working on. So I introduce the idea of higher dimensional cubes — created by “dragging and connection.” I don’t take forever with this, but kids generally accept it, with a bit of heeing and hawing. More than not believing that it’s possible, kids seem more enthralled about the process of creating higher dimensional cubes by dragging!

And then… like that… we can tie it all together with a little reading:

And… that’s the end! At this point, kids have been exposed to an incomprehensibly large number. And kids have learned a bit more about the context in which this number arose. Now some kid might want to know why we care about higher dimensional cubes with connecting lines painted red/blue. Legit. I did give a bit of a brush off answer, talking about how we all have cell phones, and they are all connected, so if we drew it, we’d have a complex network. And analyzing complex networks is a whole branch of math (graph theory). But that’s pretty much all I had!

[1] I like framing this in terms of tricking their parents. We’ve been doing that a bunch this year. And although I understand some teachers’ hesitation about lying to their students about math, I think if you frame things well, don’t do it all the time, it can be fine. I don’t think any student felt like I was playing a joke onthem or that they couldn’t trust me as their math teacher because of it.

The Problem: Wasting Class Time Reviewing Trigonometry

Last year the Advanced Algebra II kids did a boatload of trigonometry, and this year I had to make sure my kids had a strong grasp of the basics (it’s been ages since they’d seen it) before we delved into trigonometry this year in Advanced Precalculus. In previous years, I always did a “trig review unit” which I always felt like wasted time. I like to use classtime to give kids things where they have to rely on each other — but during the review unit, kids didn’t need each other much. Different kids needed to review different things. I found ways around it, but overall, it felt like wasted time.

The Solution: Mix Review A Little Each Night During the Prior Unit (Which Posed Another Problem…)

So the other teacher and I decided that while we were working on sequences and series, we would also give kids some basic trig questions each night, maybe 10-15 minutes worth. Although I can’t see myself using this curriculum in my classroom the teach the material for the first time, I really love eMathInstruction’s packets. They are well-thought-out, and their problems highlight drawing connections among tables, graphs, and equations, and they often give forwards and backwards problems.

So each night I gave a selection of problems from one or two of these lessons — all topics they had worked on last year — and had kids do them. I chose the problems and lessons based on the specific things I needed kids to remember for what we were doing this year. And then the next day, I gave the answers and let kids resolve any difficulties.

But I wanted to be thoughtful about this. It was review, but I needed to make sure that kids really had these basics down before we jumped with both feet into the depths of trigonometry. And remember, all of this was happening during a unit on sequences and series. And I was afraid without some sort of feedback mechanism, I was going to finish this review and find that kids didn’t interalize any of it, or regain the fluency with trig basics that they had last year. So I worked with another teacher (who has been acting as my “teacher coach” this year) to circumvent this problem.

The Solution To The Problem My Solution Generated: Short Daily Feedback Quizzes

This is how it worked…

Let’s say on Friday students were asked to complete review problems from Lessons #1 and #2 from the review packet. Then on Monday, I give each group the answers, have them check their own work and talk with their group to resolve any difficulties (and if that doesn’t work, ask me!), and then the rest of the lesson is continuing on with sequences and series.

Then on Tuesday, we’d start class with a short 3-5 minute check-in super basic quiz on the trig review that was due on Monday and we had already gone over. It might look like this:

The back of the quiz would look like this (kids flip to the back when they’re done):

Then we have the rest of the class on Tuesday, consisting of going over the new trig review answers for a few minutes, and then working on sequences and series.

Tuesday night, I’ll mark up the quizzes. They are worth a whopping total of 1 assessment point (most of my assessments are 30-40 points). But here’s the catch: the score is either a 0 or a 1. To get the point, you need to get all parts correct. I’m okay with that because this is an advanced class and these questions are super basic. This is feedback for the student: do they really know the basic material, or do they merely think they know the basic material? [1]

On Wednesday, we’d start class with a short basic quiz on the review trig material we went over on Tuesday, kids would get their quizzes from Monday, and we’d go over the review trig material due today (before continuing on with sequences and series).

A note about timing… Most of our classes are 50 minutes. So about 4 minutes were spent taking the brief quiz, about 5-8 minutes were spent going over the trig review work and resolving any difficulties, and the remaining time was spent on the current unit of sequences and series.

At the very end of all the trig review, I had a mini-assessment on all the trig review material.

Framing The Quizzes

When presenting the daily quizzes to students, I expected a lot of groans. Thankfully I didn’t get any audible ones, which I attitribute to taking my time framing the plan for them. I wanted them to understand the thinking and impetus behind this approach to the review material. I wanted to be transparent.

First, I acknowledged that it was a long time ago (last year!) that they had worked on trig. So it would be unfair of me to expect them to know things like or how to graph immediately. I wanted us to build up to it, slowly, so they had time to practice and get feedback. It was my job to make sure that before we resumed trig that they had refreshed themselves with the basics.

Second, I talked them through the idea behind the daily quizzes. I made sure that kids understood they would be short and only on material they had reviewed and had time to practice first. I highlighted that the quizzes served three purposes.

That they were low-stakes feedback for you on what you truly know and what you don’t know.

They will provide specific places for additional help if you find you don’t know something.

They were feedback for me on what y’all are good with and what you need work with — so I know to talk publicly about anything I’m noticing the whole class needs help with.

I did mention the grading, but I didn’t put much emphasis on that. The score wasn’t super important, except as feedback.

You might have noticed that the back of the quizzes gave specific places for students to get help with the concepts/ideas on the quiz. This was an idea my teacher coach and I generated together. The conversation we had was about feedback in general. We teachers can be good about giving feedback, but we never teach students explicitly how to use that feedback. What do they do with it? By providing specific resources/places for kids to go to get additional help (along with their teacher and classmates, of course), we thought this might highlight that we really do want these quizzes to be part of a feedback loop.

The Feedback

I took data on the quizzes. You’ll note that before each 1 or 0 are a few columns. Those are the concepts being asked. An “x” means that the student got that part incorrect. That data helped me look for trends, and what was more challenging for students, so I knew if I had to explicitly talk about any concept/idea in class.

I was planning on also using this feedback later. I was going to look at the assessment kids took at the end of the review, and see if there was any relationship between kids’ performance on the assessment and these feedback quizzes. I didn’t get a chance to do this, and truth be told, the average was so high for the review assessment (89%) I suspect it would have been a waste of time.

I also wanted to know how students felt about this process. This was an experiment for me, but to know if it succeeded, I needed feedback from students. I wanted to know (a) if they found the feedback quizzes were helpful, (b) if the feedback quizzes changed their practice in any way, and (c) if they used the feedback from the quizzes in any way. So my teacher coach and I wrote this short and pointed set of questions for them:

The results were interesting.

When asked if their preparation changed or not, it was interesting. Most kids said their preparation did change a bit, but even kids who said that it didn’t would then go on to say something that indicated that their preparation did change (highlighted in red)!

This is what kids did with the feedback (see list above from survey to see what each bar corresponds with):

And finally, here’s what kids wrote in the “anything else” box:

Overall, a success! Not only because kids found them useful on the whole, and because their practice changed because of them (for the better), but also because they did quite well on the trig review assessment (as I noted above, earning an 89% average).

More than figuring out how to deal with the annoying “how to review trig from the previous year before starting on trig in the following year” problem, this whole enterprise was an interesting excursion into feedback for me. I was hoping to find a way to create a feedback loop that was doable (and this was! it only took 10 minutes each day to mark up the simple quizzes) and created a change in student practice (which it did, because knowing there was something small students were accountable for each day changed how most kids prepared just a little bit).

To me this post and this experiment isn’t really about trig, but about now having another tool (daily feedback quizzes) in my teacher toolbelt to pull out at appropriate times.

[1] I debated whether I wanted to put a grade on these at all, or just let them be feedback with no score attached. I went back and forth about this for a long while. But ultimately, I knew that attaching a score, no matter how minimal, to the quizzes would effect more change than if I didn’t. But after introducing it, I didn’t mention the grade/score once when talking about them. I would mention common mistakes I noted and talked about ways to get extra practice with something or another. I kept my focus on the notion of feedback, and doing something with that feedback.