Ooops. This turned out to be a post with no images. So here’s **a TL;DR to whet your appetite: I wanted to expose my seniors to what college mathematics is, but instead of lecturing, I had them “pitch” a college course to the rest of the class.**

My multivariable calculus courses was coming to an end, and I got some questions about what college courses in math are about. It reminded me of a comic strip I read years ago, which I frustratingly can’t find again. It has an undergraduate going to meet with his math professor adviser, saying something like “I want to major in triple integrals.” Which is crazy-sounding — but maybe not to a high school student who has only ever seen math as a path that culminates in calculus. What more is out there? What is higher level math about? (These questions are related to this post I wrote.)

So here’s what I told my students to do. They were asked to go onto their future college math department websites (or course catalog), scour the course offerings, and find 3-4 courses that looked interesting and throw these courses down on a google doc.

It was awesome, and made me jealous that they had the opportunities to take all these awesome classes. Some examples?

After looking through all the courses, I highlighted one per student that seemed like it involved topics that other students had also chosen — but so that all the courses were different branches/types of math. I told each student to spend 10-15 minutes researching their highlighted course — looking up what the words meant, what the big ideas were, finding interesting videos that might illustrate the ideas — so they can “pitch the course to the class” (read: explain what cool math is involved to make others want to take the course).

I’m fairly certain my kids spent more than 10-15 minutes researching the courses (I’m glad!). Each day, I reserved time for 2-3 students to “pitch” their courses. And since some of the ideas were beyond them, after the pitches, I would spend 5 or so minutes giving examples or elaborating on some of the ideas they covered.

If you want to see the research they did for their pitches, the google doc they chucked their information into is here.

Some fun things we did during the pitches?

(1) We watched a short clip of a video about how to solve the heat equation (that was for a course in partial differential equations)

(2) I showed students how to turn a communication network into a matrix, and explained the meaning of squaring or cubing the matrix (this was for a course on network theory)

(3) A student had us play games on a torus (a maze, tic tac toe) (this was for a course on topology)

(4) I had students store on their calculators. Then I had each student store a different “r” value (carefully chosen by me) and then type in their calculators. They then pressed enter a lot of times. (In other words, they were iterating with the same initial conditions but slightly different systems. Some students, depending on their r value, saw after a while their x values settle down. Some had x values that bounced between two values. Some had x values that bounced between four values. And one had x values that never seemed to settle down. In other words, I introduced them to a simple system with wacky wacky outcomes! (If you don’t know about it, try it!) (This was for a course on chaos theory)

(5) A student introduced us to Godel’s incompleteness theorem and the halting problem (through a youtube video)

It was good fun. It was an “on the spot” idea that turned out to work. I think it was because students were genuinely interested in the courses they chose! If I taught a course like AP Calculus, I could see myself doing something similar. I’m not sure how I would adapt this for other classes… I’m thinking of my 9th grade Advanced Geometry class… I could see doing something similar with them. In fact, it would be a great idea because then they could start getting a sense of some of the big ideas in non-high school mathematics. Kay, my brain is whirring. Must stop now.

If anyone knows of a great *and fun* introduction to the branches of college level math (or big questions of research/investigation), I’d love to know about it. Something like this is fine, but it doesn’t get me *excited *about the math. I want something that makes me ooh and ahh and say “These are great avenues of inquiry! I want to do all of them!” I think those things that elicit oohs and ahhs might be the paradoxes, the unintuitive results, the beautiful images, the powerful applications, the open questions… If none exists, maybe we can crowdsource a google doc which can do this…